
7727A–USB–09/07

8-bit

Microcontrollers

Application Note
AVR280: USB Host CDC Demonstration

1. Introduction
The RS232 interface has disappeared from the new generation of PCs replaced by

the USB interface. To follow this change, applications based on UART interface have

to migrate to USB. Migration to USB can mean heavy development both on the PC

and on the device side. To avoid this development, Atmel offers you solutions based

on the CDC class (Communication Device Class) :

> CDC Device application (See Application Note AVR272) : such a USB device

can be connected to a PC and appears as a Virtual Serial Port.

> CDC Host application : this application replaces a PC, and greets a CDC

Device, allowing an easy and powerfull communication !

The aim of this document is to describe how to start and implement a Host CDC appli-

cation using the STK525 or USBKEY starter kit, and finally introduces a simple

example of dual USB-UART bridge between two PC.

A familiarity with the AVR USB software framework (http://www.atmel.com) and with

the CDC specification (http://www.usb.org) is assumed.

Figure 1-1. Host CDC Application

2. Theory of Operation

2.1 CDC Configuration

2.1.0.1 USB

The CDC class configuration includes two interfaces :

• Data interface : consists of 2 pipes (bulk, typically), one per transfer direction, for data

exchange

• Communication interface : used to transmit requests to manage the operational state of the

device, and events notification. It is shared between two elements :

– Management element, that consists of endpoint 0, and that configures and controls

the device through standards and specific requests.

– Optionnal notification element, that consists of an interrupt (may also be bulk)

endpoint, used by the Device to notify events to the Host. Messages transfered are

formatted as a 8-bytes header followed by a variable-length field.

In conclusion, a typical CDC application requires two pipes in addition to the default control end-

point. But note that a CDC Device is accepted by a standard PC only if it includes the optional

notification element (using default driver).

2.1.0.2 Models

The CDC Class Specifications introduces various models of communication. Each model is

characterized by the type of interface implemented, and the commands or protocol supported.

This is specially used to communicate with USB modems that may use a specific protocol layer

(for example V42bis), or even USB phones, etc.

But, for users that do not care about such models, and just want to exchange data between two

application, these models are irrelevant.

This application note will shortly introduces the reader to these models and to the associated

commands and/or requests. However, its primary goal is to explain the Host CDC firmware low

level architecture and to demonstrate the simplest configuration with an evaluation example.

2.2 Transfers

2.2.1 Data Transfer

2.2.1.1 Raw Data

Once the Device has been enumerated by the Host, data can easily be sent between the

applications.

• The device can fill in its IN Endpoint with any amount of data. The host is assumed to poll as

often as possible the IN endpoint and get back any possible data in its IN pipe.

• The host can fill in its OUT Pipe with any amount of data. The device will receive the packet

in its OUT Endpoint as soon as the Host completes the transmission.

That is the simplest way for two basic applications to exchange data with the USB performance,

but with the easiness of an UART :

• uses a Bulk transport way that can theorically reach up to 1.2Mbytes / sec at Full Speed.

• USB reduced size (and low-cost) connectivity
 2

7727A–USB–09/07

AVR280 Application Note

 AVR280 Application Note
This is the simplest use case of an UART-to-USB bridge. In such a configuration, once the

device has been enumerated and configured, the Managemenent Interface can be left aside,

and all the data is exchanged through the Data Interface.

2.2.1.2 Encapsulated Data

For higher level application, the CDC class defines a format of data encapsulation to handle the

packet with a protocol data wrapper.

This mode will not be discussed here since it goes beyond the objectives of a simple demonstra-

tion. See Table 1 at page 11 of the “CDC Class Specification v1.1” for more information.

2.2.2 Communication Management

This part of the class is not mandatory for simple data exchange applications.

2.2.2.1 Management element

Through the default control endpoint, the Host can send bidirectional requests to the Device.

The format of these requests follows the layout defined in the USB Specification 2.0 :

Two types of requests can be considered :

• Requests that set the Device into a specific state or configuration, or that send information :

– SET_LINE_CODING : this request configures the Device with parity, baudrate, and

some other parameters

– SET_HOOK_STATE : this request puts the Device line into a specific state (on-hook,

off-hook, snooping)

– SEND_ENCAPSULATED_COMMAND : this requests sends a packet within a

specific encapsulation protocol

– etc...(see Section 6.1 of CDC Class Specification)

• Requests that get the Device state or configuration, or any other information :

– GET_LINE_CODING : this request gets the Device configuration

– GET_ENCAPSULATED_RESPONSE : this request gets a packet within a specific

encapsulation protocol

– etc...(see Section 6.1 of CDC Class Specification)

2.2.2.2 Notification element

Through this optional pipe (interrupt IN transfer), the Device can transfer special events notifica-

tions to the Host.

Some examples :

– NETWORK_CONNECTION : the device informs the host about the connection state

(after a change, for example)

Table 2-1. Management request packet format

bmRequestType bRequest wValue wIndex wLength Data

Table 2-2. Notification packet format

bmRequestType bNotification wValue wIndex wLength Optional Data
 3

7727A–USB–09/07

– RESPONSE_AVAILABLE : the device informs the host that a response is available.

Host will need to send a GET_ENCAPSULATED_RESPONSE request through the

management element to get this response.

– etc...(see Section 6.3 of CDC Class Specification)

For more details and information about communication management, please read section 6 of

the “CDC Class specification”.

3. ATMEL Software Architecture
Below is an overview of the architecture of the Host CDC firmware, where appear all files

required for the operation.

Figure 3-1. Host CDC Firmware architecture

main.c

scheduler.c

usb_task.c

usb_host_task.c usb_host_enum.c

conf_scheduler.h

host_cdc_task.h

usb_drv.c

config.h

usb_host_task.h

conf_usb.h
usb_host_enum..h

Should not be modified by user Added by user

C
D

C
 a

p
p

li
c

a
ti

o
n

A
P

I
D

ri
v

e
rs

usb_drv.h

H
a

rd
w

a
re

USB hardware interface

Enumeration
management

CDC application
management

usb_task.h

S
ta

rt
 u

p

Board
driver

board driver
header

host_cdc_task.c

uart_lib.c
uart_lib.h
 4

7727A–USB–09/07

AVR280 Application Note

 AVR280 Application Note
3.1 Enumeration

When a device connects to the host, enumeration starts. If the device interface is accepted by

the USB Host firmware low-level task, that compares the device descriptors with the list of sup-

ported interfaces (defined in “conf_usb.h” file), then the host_cdc_task() sees a connection

notification (Is_new_device_connection_event() macro returns TRUE).

The number of currently accepted interfaces is returned by Get_nb_supported_interface() func-

tion. For each interface number, program access to the class, subclass and protocol codes of

the device thanks to the Get_class(i), Get_subclass(i) and Get_protocol(i) macros.

First, the program checks if the connected device has a CDC Data interface. If the device inter-

face is accepted, the connection function searches which pipe is IN, and which pipe is OUT, to

associate them with more common names : pipe_cdc_data_bulkin and pipe_cdc_data_bulkout.

After that, the IN pipe is unfreezed to enable data reception in the pipe.

Then, the program checks if the connected device has a CDC Communication interface (notifi-

cation element). If yes, the pipe address is also stored in a common name : pipe_cdc_comm_int.

Use r enab le the managemen t i n te r fac e de tec t ion by de f in ing the labe l

CDC_USE_MANAGEMENT_INTERFACE. The interface number is also stored in the variable

cdc_interface_comm, because it will be needed if management requests are used.

Once the connection is accepted, the cdc_connected flag is set to “1” and the pipes can be used

by the user application.

Below is the corresponding function code :

The management of the CDC is made in the “host_cdc_task.c” file. The main function, periodi-

cally called by the scheduler, is host_cdc_task(void), that handles three main operations :

• Connection (and disconnection) detection

– Accept or reject any new device according to its interface descriptors

– Associate the physical pipes with the CDC software channels

• Data transfer

– Check for incoming data stream

– Send data if required by the user application

• Management transfer

– Check if an event notification has been received

– User can also send request through the default control endpoint
 5

7727A–USB–09/07

Code 3-1. CDC device connection detection

3.2 Data Transfer

Data transfer is very easy to implement.

3.2.1 Receiving data

If the CDC device is connected, the program checks as often as possible (every time the func-

tion is entered) if the pipe has received new data.

The current firmware allows two operations with the pipe data :

• Data is stored in an array :

if(Is_new_device_connection_event()) //Device connection

 {

 for(i=0;i<Get_nb_supported_interface();i++)

 {

 // Data Interface

 if((Get_class(i)==CDC_DATA_CLASS) && (Get_protocol(i)==CDC_DATA_PROTOCOL))

 {

 cdc_connected=1;

 Host_enable_sof_interrupt();

 LOG_STR_CODE(log_cdc_connect);

 if(Is_ep_addr_in(Get_ep_addr(i,0)))

 { // Yes associate it to the CDC Data IN pipe

 pipe_cdc_data_bulkin = host_get_hwd_pipe_nb(Get_ep_addr(i,0));

 pipe_cdc_data_bulkout = host_get_hwd_pipe_nb(Get_ep_addr(i,1));

 }

 else

 { // No, invert...

 pipe_cdc_data_bulkin = host_get_hwd_pipe_nb(Get_ep_addr(i,1));

 pipe_cdc_data_bulkout = host_get_hwd_pipe_nb(Get_ep_addr(i,0));

 }

 Host_select_pipe(PIPE_CDC_DATA_IN);

 Host_continuous_in_mode();

 Host_unfreeze_pipe();

 break;

 }

 // Management Interface

#ifdef CDC_USE_MANAGEMENT_INTERFACE

 if(Get_class(i)==CDC_COMM_CLASS && Get_protocol(i)==CDC_COMM_PROTOCOL)

 {

 cdc_interface_comm = i; // store interface number

 pipe_cdc_comm_int = host_get_hwd_pipe_nb(Get_ep_addr(i,0));

 Host_select_pipe(PIPE_CDC_COMM);

 Host_continuous_in_mode();

 Host_unfreeze_pipe();

 }

#endif

 }

 }
 6

7727A–USB–09/07

AVR280 Application Note

 AVR280 Application Note
– the array cdc_stream_in_array[CDC_STREAM_IN_SIZE] is filled in by firmware

with incoming data

– the variable rx_counter indicates the position of the next byte to be written in the

array (initialized to 0 ; the buffer is full when rx_counter equals

CDC_STREAM_IN_SIZE). Consequently, it indicates for the user the number of

written bytes.

– when user firmware reads the data from the array, it must either use another index

variable to accede to the data, or read all the array at one go and clear rx_counter. If

user decrements rx_counter for each byte read from the array, and exits its functions

before reading the entire array, problems will occur (for example data corruption on

next pipe reception)

• Data is sent to the UART (USB-UART bridge configuration) :

– all the bytes are sent to the UART

– this is a blocking function, that is waiting for each byte to be transmitted before trying

to accede to the next data (this limitation can be easily enhanced)

– this mode is enabled by defining the CDC_USE_UART label

Code 3-2. Reading data from the device

These operations are implemented for an evaluation purpose. User can use the current function

“as is”, but he is also free to implement its own data handler (or packet wrapper for example),

acceding directly to the pipe.

 Host_select_pipe(PIPE_CDC_DATA_IN);

 if (Is_host_in_received() && (Is_host_stall()==FALSE))

 {

#ifdef CDC_USE_UART

 while (Host_data_length_U8() != 0)

 {

 uart_putchar(Host_read_byte());

 }

 Host_ack_in_received(); // pipe is empty

 Host_send_in(); // ready to receive more data

#else

 while ((rx_counter != CDC_STREAM_IN_SIZE) && (Host_data_length_U8() != 0))

 {

 cdc_stream_in_array[rx_counter] = Host_read_byte();

 rx_counter++;

 }

 if (Host_data_length_U8() == 0)

 {

 Host_ack_in_received(); // pipe is empty

 Host_send_in(); // ready to receive more data

 }

#endif

 }
 7

7727A–USB–09/07

3.2.2 Sending data

The principe of operation is very similar to the data reception stage. Data to be transmitted is

first stored in an array, cdc_stream_out_array[CDC_STREAM_OUT_SIZE]. A global variable,

tx_counter, indicates the number of bytes currently stored, and consequently the position of the

next data byte to be stored.

There are two possible sources of data for the array :

• User program : user specific firmware can load data into the array, incrementing tx_counter

for each byte written (initialized to 0 when no data stored)

• UART : if the label CDC_USE_UART is defined, the array will be filled in with each new byte

received on the UART.

Moreover, there are two possible conditions for the array data to be transferred to the OUT pipe :

• Buffer full : as soon as the buffer is full (tx_counter = CDC_STREAM_OUT_SIZE), all the

array data is transferred to the pipe.

• Time-out : a time counter variable, cdc_cpt_sof, is incremented at each USB Start Of Frame

(every 1ms) interrupt in the sof_action() function. When this counter reaches or exceeds the

user defined value CDC_NB_MS_BEFORE_FLUSH, and if the array is not empty, all the

buffer data is transferred to the pipe.

The pipe transmission on the USB is ensured by the cdc_pipe_out_usb_flush() function.

Code 3-3. Sending data to the device
 #ifdef CDC_USE_UART

 // Check if new byte in USART, to be stored for USB

 if (uart_test_hit() && (tx_counter != CDC_STREAM_OUT_SIZE))

 {

 cdc_stream_out_array[tx_counter] = uart_getchar();

 tx_counter++;

 }

#endif

 // Check if pipe flush is needed (buffer full or time-out period elapsed)

 if(((cdc_cpt_sof>=CDC_NB_MS_BEFORE_FLUSH) && (tx_counter!=0)) || (tx_counter == CDC_STREAM_OUT_SIZE))

 {

 cdc_cpt_sof=0;

 cdc_pipe_out_usb_flush();

 }
 8

7727A–USB–09/07

AVR280 Application Note

 AVR280 Application Note
Code 3-4. Additionnal functions

3.3 Communication Management

3.3.1 Management element

Through the endpoint 0 are transferred CDC specific requests, defined in the CDC Class Speci-

fication. These requests can be defined in the following form :

Code 3-5. Management request layout

User can easily add other request by editing the “host_cdc_task.h” file. However, some of them

are already integrated in the Atmel Host CDC Firmware :

3.3.1.1 Encapsulated requests

These requests are used to transmit specific requests that are encapsulated according to a spe-

cific protocol.

void cdc_pipe_out_usb_flush (void)

{

 Host_select_pipe(PIPE_CDC_DATA_IN); // BULK IN must be frozen else BULK OUT may not be sent

 Host_freeze_pipe();

 if (PIPE_GOOD == host_send_data(PIPE_CDC_DATA_OUT, tx_counter, cdc_stream_out_array))

 {

 tx_counter = 0; // if frame not sent, will try again next time (no data loss)

 }

 Host_select_pipe(PIPE_CDC_DATA_IN);

 Host_unfreeze_pipe();

}

void sof_action(void)

{

 cdc_cpt_sof++;

}

#define host_cdc_get_line_coding() (usb_request.bmRequestType = BM_REQUEST_TYPE,\

 usb_request.bRequest = B_REQUEST,\

 usb_request.wValue = W_VALUE,\

 usb_request.wIndex = W_INDEX,\

 usb_request.wLength = W_LENGTH,\

 usb_request.uncomplete_read = FALSE,\

 host_send_control(data_stage))

Where the parameters in BOLD & ITALIC must be replaced by the parameters matching

with the specific request.

The W_INDEX field is typically equal to “cdc_interface_comm”, that is assignated to the

management interface (if enabled) of the device.

The W_LENGTH field contains the number of data bytes to be transmitted in the request.

Data bytes (to be sent, or received) are stored in the “data_stage” array.

Table 3-1. SEND_ENCAPSULATED_COMMAND request

bmRequestType bRequest wValue wIndex wLength Data

00100001b 0x00 0x00 Interface

Amount of data

associated with

this recipient

Control protocol-based

command
 9

7727A–USB–09/07

Table 3-2. GET_ENCAPSULATED_RESPONSE request

3.3.1.2 Communication parameters requests

These requests may be used to set (or to get) a configuration to (or from) the CDC Device for its

UART communication.

Table 3-3. SET_LINE_CODING request

Table 3-4. GET_LINE_CODING request

3.3.2 Notification element

The notification element, that consists of the additional IN endpoint, receives events notification

from the device.

The current Atmel Host CDC software does not include a packet wrapper for this pipe. But a

location is ready to greet user’s notification handler.

Please read the CDC Class Specification for more information about features offered by this

interface.

bmRequestType bRequest wValue wIndex wLength Data

10100001 0x01 0x00 Interface
Amount of data associated

with this recipient

Protocol

dependent data

bmRequestType bRequest wValue wIndex wLength Data

00100001b 0x20 0x00 Interface 0x07 Line coding structure

bmRequestType bRequest wValue wIndex wLength Data

10100001b 0x21 0x00 Interface 0x07 Line coding structure

Table 3-5. Line coding structure

Offset Field Size Value Description

0 dwDTERate 4 Number Data terminal rate, in bits per second

4 bCharFormat 1 Number Stop bits :

– 0 - 1 stop bit

– 1 - 1.5 stop bits

– 2 - 2 stop bits

5 bParityType 1 Number
Parity

– 0 - None

– 1 - Odd

– 2 - Even

– 3 - Mark

– 4 - Space

6 bDataBits 1 Number Data bits number (5, 6, 7, 8, or 16)
 10

7727A–USB–09/07

AVR280 Application Note

 AVR280 Application Note
Code 3-5. Notification pipe handler template

4. Example

4.1 Overview

All this theory may appear complex, so here is a simple example to allow a quick evaluation and

cheer users about CDC Class implementation, with an evaluation purpose : a dual USB-to-

UART bridge.

In this configuration, the CDC Host application has an UART connected to the serial port of a

PC-1. A CDC Device has also an UART that is connected to another serial port of the same PC-

1, or to the serial port of another PC-2. Both CDC applications are connected together through a

USB connection. This application, totally useless as an industrial or consumer application, sim-

ply shows the mechanisms of CDC data transfers.

Figure 4-1. Dual USB-UART bridge evaluation example

Note: Additional CDC device boards can be used to provide RS232 ports on the PCs if they only have

USB ports available.

The CDC Device can be implemented on any AVR USB using a software package available on

Atmel website (http://www.atmel.com). The CDC Host uses the corresponding software package

that is also available on the Internet.

4.2 Hardware

Both software packages can be run on available starter kits. At the time of writing, the Host CDC

package can be run on STK525 or USBKEY package (featuring AT90USB647/1287), and the

 Host_select_pipe(PIPE_CDC_COMM);

 if (Is_host_in_received())

 {

 // Handle here notification messages sent by device

 // Notifications messages have the following structure :

 // bmRequestType - bNotification - wValue - wIndex - wLength - Data (wLength is the number of bytes of the Data field)

 // - NETWORK_CONNECTION : indicates that device has connected to network

 // - RESPONSE_AVAILABLE : indicates that device has a ready encapsulated response (wait for host request)

 // - SERIAL_STATE : indicates state of device' UART (errors, carriers and misc. signals)

 // - etc...

 // ...and now...just coding...

 Host_ack_in_received();

 Host_send_in();

 }

CDC Host

U
A
R
T

U
S
B

H
o
s
t CDC Device

U
A
R
T

U
S
B

D
e
v
i
c
e

USBRS-232
RS-232

Ext. Power

PC-1
PC-2
 11

7727A–USB–09/07

Device CDC package can be run on STK525, USBKEY (AT90USB64x/128x) or STK526

(AT90USB82/162).

The USB Device board should be configured in Bus Powered mode for the simplest operation.

The USB Host board must be Self Powered (external power supply) and configured in order to

provide power to the USB Device board.

4.3 Software

4.3.1 Microcontroller

4.3.1.1 Operation description

This example does not exchange data through the management interface. However, this inter-

face may be implemented, in order to ensure compatibility with other CDC applications.

Once enumerated, every byte received from PC-1 will be transferred from UART to the OUT

pipe of the CDC Host, then received in the OUT endpoint of the CDC Device, and finally tran-

ferred to PC-2 through the UART. Bytes sent by PC-2 follow the opposite direction and arrive

into the PC-1 serial port buffer.

4.3.1.2 Configuration

Some parameters must be defined on each microcontroller to ensure correct operation. The

software package does not need to be modified, it is working “as is” and is configured with the

values given below.

• UART Baudrate : in “config.h” file, defines the label BAUDRATE to the desired baudrate.

Packages come with a default value of 38,4 kbps (BAUDRATE = 38400).

• USB configuration, in the ”conf_usb.h” file :

– the CLASS_SUBCLASS_PROTOCOL array must include the CDC Data Interface

and CDC Communication Interface values

– the Host_sof_action() must be linked to the sof_action() function (whose prototype

must be declared too)

• Host CDC configuration : in “config.h” file or any header file accessible by “host_cdc_task.c”

file must be defined the following values or labels :

– CDC_USE_MANAGEMENT_INTERFACE must be defined (even if no data is

exchanged through this interface)

– CDC_USE_UART must be defined (to enable the USB-UART bridge feature)

– CDC_NB_MS_BEFORE_FLUSH is not very important for a human controlled

application, so it can be set to 0x05 by default (the influence of this value may

depend on the application)

– CDC_STREAM_OUT_SIZE and CDC_STREAM_IN_SIZE depend on the expected

data rate : higher the data rate expected (number of character that may be sent per

second in reality), higher these two values. But don’t exceed the data pipe or

endpoint size ! (to prevent loss of data) Default value is 16 (0x10).

4.3.2 PC serial port

To exploit easily any serial port of a PC, you may run a terminal. Under Windows, you can

launch Hyper Terminal (Accessories => Communications). First you will have to select the COM

port on which is connected the application (host or device). Then, the detailled configuration of
 12

7727A–USB–09/07

AVR280 Application Note

 AVR280 Application Note
the port must be correctly entered. Using our package unmodified, you must set the following

configuration :

Figure 4-2. Hyper Terminal configuration

Then appears the terminal dialog screen, on which you can enter character to be sent on open

serial port, or see characters that have been received on the port.

Every character that you will enter in the screen of PC-1 will appear on PC-2, and vice-versa.

5. Conclusion
In conclusion, the CDC Class is a wide specification that covers many and many different config-

urations, and match with several communication standards, to support devices such as modem,

mobile phones, LAN interfaces...

Although the work load required for the implementation of such devices can be very significant,

a basic implementation of data transmitter is easily accessible. This application note has been

created to help people who want to use the Host capability of Atmel AVR USB products to set up

a powerfull communication mean, easy to use and reliable, using today’s technologies. Applica-

tions such an USB-to-UART bridge (or similar) can be easily created.

6. Related Documentation

• AVR USB products Datasheet

• USB Sotware Framework

• CDC Device application note (AVR272)

• USB CDC class specification

Available on :

• http://www.atmel.com

• http://www.usb.com
 13

7727A–USB–09/07

©2007 Atmel Corporation. All rights reserved. Atmel®, logo and combinations thereof, are registered trademarks, and Everywhere You

Are® are the trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL’S TERMS AND CONDI-
TIONS OF SALE LOCATED ON ATMEL’S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY
WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDEN-
TAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT
OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no
representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications
and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically providedot-
herwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel’sAtmel’s products are not intended, authorized, or warranted for use as
components in applications intended to support or sustain life.

Atmel Corporation Atmel Operations

2325 Orchard Parkway

San Jose, CA 95131, USA

Tel: 1(408) 441-0311

Fax: 1(408) 487-2600

Regional Headquarters

Europe

Atmel Sarl

Route des Arsenaux 41

Case Postale 80

CH-1705 Fribourg

Switzerland

Tel: (41) 26-426-5555

Fax: (41) 26-426-5500

Asia

Room 1219

Chinachem Golden Plaza

77 Mody Road Tsimshatsui

East Kowloon

Hong Kong

Tel: (852) 2721-9778

Fax: (852) 2722-1369

Japan

9F, Tonetsu Shinkawa Bldg.

1-24-8 Shinkawa

Chuo-ku, Tokyo 104-0033

Japan

Tel: (81) 3-3523-3551

Fax: (81) 3-3523-7581

Memory

2325 Orchard Parkway

San Jose, CA 95131, USA

Tel: 1(408) 441-0311

Fax: 1(408) 436-4314

Microcontrollers

2325 Orchard Parkway

San Jose, CA 95131, USA

Tel: 1(408) 441-0311

Fax: 1(408) 436-4314

La Chantrerie

BP 70602

44306 Nantes Cedex 3, France

Tel: (33) 2-40-18-18-18

Fax: (33) 2-40-18-19-60

ASIC/ASSP/Smart Cards

Zone Industrielle

13106 Rousset Cedex, France

Tel: (33) 4-42-53-60-00

Fax: (33) 4-42-53-60-01

1150 East Cheyenne Mtn. Blvd.

Colorado Springs, CO 80906, USA

Tel: 1(719) 576-3300

Fax: 1(719) 540-1759

Scottish Enterprise Technology Park

Maxwell Building

East Kilbride G75 0QR, Scotland

Tel: (44) 1355-803-000

Fax: (44) 1355-242-743

RF/Automotive

Theresienstrasse 2

Postfach 3535

74025 Heilbronn, Germany

Tel: (49) 71-31-67-0

Fax: (49) 71-31-67-2340

1150 East Cheyenne Mtn. Blvd.

Colorado Springs, CO 80906, USA

Tel: 1(719) 576-3300

Fax: 1(719) 540-1759

Biometrics/Imaging/Hi-Rel MPU/
High Speed Converters/RF Datacom

Avenue de Rochepleine

BP 123

38521 Saint-Egreve Cedex, France

Tel: (33) 4-76-58-30-00

Fax: (33) 4-76-58-34-80

Literature Requests

www.atmel.com/literature
 Printed on recycled paper.

7727A–USB–09/07

	1. Introduction
	2. Theory of Operation
	2.1 CDC Configuration
	2.1.0.1 USB
	2.1.0.2 Models

	2.2 Transfers
	2.2.1 Data Transfer
	2.2.1.1 Raw Data
	2.2.1.2 Encapsulated Data

	2.2.2 Communication Management
	2.2.2.1 Management element
	2.2.2.2 Notification element

	3. ATMEL Software Architecture
	3.1 Enumeration
	3.2 Data Transfer
	3.2.1 Receiving data
	3.2.2 Sending data

	3.3 Communication Management
	3.3.1 Management element
	3.3.1.1 Encapsulated requests
	3.3.1.2 Communication parameters requests

	3.3.2 Notification element

	4. Example
	4.1 Overview
	4.2 Hardware
	4.3 Software
	4.3.1 Microcontroller
	4.3.1.1 Operation description
	4.3.1.2 Configuration

	4.3.2 PC serial port

	5. Conclusion
	6. Related Documentation

